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FOREWORD

The work described in this report was accomplished by mem-
bers of the Department of Engineering and Applied Sclence,
Dunham Laboratory, Yale University, under subcontract to the
SUBIC program (contract NOnr 2512(00)) during the period from
July 1, 1963 to July 1, 1964. The Office of Naval Research 1is
the sponsor and General Dynamics/Electric Boat 1s the prime
contrcetor. Ledr. R. N. Crawford, USN, is Project Officer
for ONR; Dr. A. J. van Woerkom 1s Project Coordinator for
Electric Boat and Chief Scientlst of the Applled Scilences

Department.

The SUBIC program encompasses all aspects of submarine
system analysis. This report is the second of a series

deallng with acoustic signal processing.
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ABSTRACT

This report describes work concerned with the detection
and determination of the bearing of a single target in an
isotropic noise field. In the cases studied, the data source
was agsumed to be a single hydrophone or a given array of
hydrophones. The problems investigated involved studies of
likelihood ratio detection of sinusoidal signals in gaussian
noise, likelihood ratio detection of gaussian signals in
wide-band noise, and determinations of random bcaring errors
due to processing and also due to medium inhomogeneity for

specific typcs of sonar systems.
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I. Introduction

The studies undertaken during the period from July 1, 1963, to dly 1,
196, are described in detail in nine progress reports, which serve as
appendices to the main body of this report., The subject material covered
in Appendices A through I can be arranged in roughly three categories,

In all three categories the work was concerned with the processing of a
signal generated by a single target in a hackground of isotropic random
noise,

In the first category, the detection of sinusoids or quasi-sinusocids
of unknown center f{requency in a background of gaussian, band-limited
noise was considered, It 1s well known that surface and underwater
targets emlt signal components with periodic structures as well as
components with wide-band random structures. Appendices 4, G, and H give
the results of basic studies involving the detection of sinusoldal signals
or of very narrow~band random signals having a center frsquency kmown only
within a band of uncertainty. Theisignal source is a single hydrophone,
and likelihood-ratio techniques are employed. The assumptions and results
are described in more detail in Section II.

In the second category, the studies involved the detection of a wide-
band directional gaussian signal in a similar background of isotropic
noise, 1 :is work, carried out in Appendices C and D, contains extensions
of studies reported earlier by Yale University,l In Appendix C, the
performance of & suboptimal detector is compared to that of a likelihood~
ratio detector. Since the completion of Appendix C, a slightly different
scheme has been evaluated by Knapp,2 In Appendix D, the performance of a

likelihood-ratio scheme is evaluated for the detection of gaussian signals

-3




for the situation in which the average noise power varies frecm hydrophone
to hydrophone. The performance of the likelihood-ratio detector is
compared to that of an array with infinite clippers and a standard
detector.3 The assumptions and results are dsscribed in more detail

in Section TII,

Finally, in the third category, the camputation of random bearing
errors was considered, Appendices B, E, F, and I are studies in this
category, Appendix E contalns a fundamental study for detefmining the
pinimum varignce of the relative delay between signals generated by
two hydrophcnos, by using statistical estimation techniques, Since the
bearing of a single signal source in a medium is directly related to the
relative delay between signals generated by two transducers separated by
a known distance, this study essentially determines the lower bound for
random bearing error for the simple array due to processing techniques,
In Appendices F and I, the random be-ring errors dus to processing
techniques for particular types of sonar systems are evaluated, In
Avpendix G, the bearing uncertainty caused by the scattering effect of
a medium with a randomly varying refraction index is studied, The

agsumptions and results are described in more detail in Section IV,
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II, Optimal Detcct.ion of Sinusoids or Quasi-Periodic Signa’ 3 in Noise

In Appendix A, the detection of a sinusoidal signal of known
amplitude, but unknown frecquency and phase, in additive gaussian noise
is considered. P'ti.ddleton's)4 development of the likelihood-ratic
(hereafter LR) detector, using time-sampled functions, is closely
followed, Two cases for the distribution of the unknown frequency
are considereds (1) The frequency is equally likely to be one of m
different frequencies, (2) The frequency has a uniform probability
density function over a band @ rad/sec wide centered at @ rad/sec,

The LR formed by the optimum detector is

Cwa),

£(y/0)

¢(v) = 1)

where g is the desired signal vector, n is the noise vector, v =258 +n
is the receivod signal, and f(v/s) and f(v/o) are conditional
probability density functions., The operation <'%; indicates averaging
over the signal parameters of phase and frequency; The detection scheme
is essentially one of energy measurement, that is, an incoherent scheme,
gince <E>S = 0, The logarithm of the LR is used as the test statistic
bocause it is more ecasily intcrpretable.

The performance index defined in Eq. (2) is uscd to make appropriate
comparisons, ond has been usced previously.

2

R = [<10g 8(X)>S+N ] <1°g 8(1)>N2r (2)
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The index R is an output signal-to-noise ratio (hercafter SNR) for the

LR detector, The opcrations < >S oy and < >N indicate further averages

taken with signal and noise present, and with signal absent respectively,
In the scries ceipansion of log 3(2), if only the terms represonting

quadratic operations on v are retained for the LR detector, we have

log 8(2)'2’% ng v - % tr (K G) - % tr(K g)e (3)

where

G-x'Esn) K (n)

and X is the covariance matrix for the noise. The last two terms in
Eq, (3) represent bias terms ol the detector, This approximation is
justified in the literature on tho basis of small signal-to-nolse ratio,
For the situotion in which the noise is white and ideally band-
limited, and the unknown frequency 'ias the discrete distribution, the

variable term of Eq. (3) is

~ 2 V]
, n T T
= T }
%x'gx?’rjﬁ ] v(t, cos ai{t dt | + [v(t)sin mkt dt (5)
L | ‘é

vhere A i< the signal amplitude, N is the noisc power, T is tne
obscervation time, and 4 is the time interval dictated by the sampling
thoorem, From Eq. (5) the detector is scen to consist of a bank of m
corrclators and squarcrs (Figure 1, Appendix A),

Noxt, for the casc in which the statistics of the unknown frequency
arc given by uniform probability density function over a band € rad/sec

vide, the variable term in Eq. (3) is given by the quadratic form




n n
). Zvv stne (b, - t,) cos ayty = 8,)  (6)
i=1

rol
1<
1551
i<
Em!:>
n>

e . gin na
§ = 5= and sinc a = ~—=——
na

The output SHR is given by

y non | 5
R=%tr(}£§)2=£§z Zlisinc Q(ti—tj)cos coo(ti-tj)]

':——TS?QT (7)

if o > @, oT> 1, §T > 1, and N=NQ.

0 0 0

Finally, for the situation in which the nolse has a bandwidth equal
to that of the signal uncertainty, it is shown that the optimum detector

is a squarc-law device followed by an integrator. The SNR is

(8)

j [ dy sinc? (x - y)

Both the results of Egs, (8) and (7) are plotted in Fig. 2 of Appendix A,
The optimal narrow-band detection index is slightly greater than that for

tho wide-band case, bocause it is assumed thet the ideal prefilter




neceszary to process the wide-band nolse to a narrow-band noise has been
operating on the received si;fnal for an infinito time, not just in the

observation interval (0,T).

The previous results apply to the rocoived signal from a single
hydrophone, For an array of M hydrophones, the detection index is M2
timos tho above oxprossions., Expressions are also derived in Appendix A
for the case of non-white background noise, and a gonoral expression is
given for tho output signal-to-noise ratio for suboptimum incohdrent
dotectors,

The neglect of the higher-order terms in the cxpansion of log EQE)
is based on the assumption that low predotection SNR (A2/2N) makes the
higher-ordor terms negligible, This is the usual assumption made in the

ltorature, However, for certain classes of signals, namely the one

considerocd in Appendix A, long intogration or obsorvation time can make

the highor-order terms for the expansion of 1log &(z) become predominant,

oven though tho predetoction SNR is low.

In Appondix G, a study is carried out of the conditions under which
the higher-order teorms in the scrics for 1log 8(3) do not become
negligible, Threce different signal cases are considerod:

1) A gaussien random signal which has a fMat spectral density over

a band of wdth @ rad/scc.

2) A narrov-band gaussian random signal with bandwidth Qb rad/sec
and centor frequency W, rad/scc, In this casc W, is unknown
and has a uniform probability density function over tho band &
and Qb << @,

3) A sinusoid of constant amplitude, unknown frcquency and phase,

the rrequency having a uniform probability density functlon

g
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over the band Q. This is the case treated partially in
hLppondix A,
In cach .asc the noise is assumed gaussian and has a flat spectral density
over &, the 'band" of the signal
Since the noisc is white, and the signals described above are
incohcrent in the scnso that <-S->S = 0, the averaged LR and the test

statistic are found to be

! n
&(y) = exp( = z s, 2\ R SRR (L A 9)

and

n
2
log ¢(v) = - §-lﬂ- Z 312 + %’ «E'}_{-l}.’_)>

i=1
2

Iy <(£'£'1!)h> - § <<§'I£'1x)2>

¢ 0(s%) (10)

Equation (10) is exact for terms through O(_s_h).

In order to justify either using or neglecting higher-order terms for
the signal in Eq. (10), the change or deflcction in thesc terms must be
examined in going from the "noisc-only" condition to the "signal-plus-

noise" condition The total change or doflection is the numerator term

<log 5(v <log ov )> in Eq. (2). TFor cach of the threc signal

cascs, the following doflections (AE) are calculated:




: <(.8.'E”1z >2>

L

AE[O(_S_2 )] = AR

e [a(ghﬂ - 8 <(. Ky ’h> 3 <(-S--'5~11 )

and

i 6
AEl'largest term in O(gé)J = AEII:?}T <(f:' '_Iﬂ_l_Y,) >

(11)

(12)

(13)

The computations of the deflections, especially for higher-order

terms, are extremely complicated, The results of the computations are
2
summarized in Table 1, in which the predetection SNR, Ri e %ﬁ ’

constant amplitude
Unknown frequency
and phase

Erq) - r )
- 313 QI‘

Signal Description AE{O(;_Q?} AE[O(_S_h)] AE[largest 0(5_3_6)]
1. Random gaussian  |R.° OT R JT & qT

Bandwidth . *
2, Random gaussian

Bandwidth 2 Lifl 1 2. [1 3 .

. R, gr R, [35-72-)@) * ‘E?-Bb) @I‘)jl not. computed
b= <<l
3
- R QT

3. Sinusoid of

6
Lel@y

Table 1

Deflections of Series Terms for log Z(X)

e T

it RIS B #)
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From Table 1 it can be seen that only the random signal having

bandwidth Q satisfies the assumptions made in Appendix A.

A1l deflection

terms for this signal are proportiocnal to @T, and higher-order terms

depend on higher powers of Ri‘ Thus, for small Ri’ the approximation by

terms of the 0(52) is sufficient, The narrow-band gaussian signal with

uncertain center frequency has AE[?(ghi] increasing primarily as @T)2

and the same deflection for the steady sinusoidal signal increases as

(§T)3, Higher-order deflections increase with higher powers of ﬁT.
, b=.,1,and @T = 100 .

For a numerical example, lst Hi =cHlE

The numerical results from direct substitution into the expressions in

Table 1 are given in Table 2,

Signal Description AR [() (52 ):l A [O (gh)J AE[largest O(‘_si6 )]
3. Sizgigigdgf constant 1.0 66.6 3333
L

Table 2 Numerical Values for Deflections

B

=.1,b=.1, QT = 100

The numerical values chosen above are used because the output SNR for the

random signal of bandwidth @ has the same expression as that for AE{?(QQﬂ :

The table thus gives a rather marginal output SNR for detection purposes.

For the other signals, the deflections for higher-order terms are much

larger than that for AE[?(gz)} and therefore camnot be neglected,
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The latter tuo signal cases are nonergodic and if one were to construct
an efficient detector, the operations corresponding tc the higher-order
terms of Eq, (10) would have to be built into the detector. A consideration
of the higher-order terms for a signal whose center frequency is equally
likely to be any one of m different frequencies suggests a band-splitting
detector containing m filters, and nonlinear operation on the output of each
of the detectors, Such a technique is examined in Appendix H.

In Appendix H the optimum detector structure is determined for the
case in which the signal is assumed to be a sinusoid with known amplitude
and phase and unknown frequency, The frequency is assumed to take on any
one of m equal y likely values., The phase is assumed to be known in order
to koep the mathematical development relatively simple,

The averaged LR where one parameter is unknown and may take on only

discrete values can be expressed as

o(y) - zmpi swpliog 1, o) (1)
1=1

where w, are the possible frequencies, p; ore the respective probabilities
of occurrence, and L(v,w, ) are the LR's for particular values of frequency.
The decision scheme consiste of zamparing €(v) with a pre-set threshold k:
if ¢(v) < k, "no signal" is the decision; if &(v) >k , "signal present!
is the decision, The quantities log L(X:“ﬁ) in Eq, (1L) are considered

as coordinates of an m-dimensional space for the received signal v. The

boundary .

1= 1

divides this space into the "signal" and "no signal" regions.

ESSEEY
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The decision scheme is examincd in detail for the two-frequency cass,

The boundary between the decision regions is given by

log L{v,w,) = log {2k - exp [log L(_y_,ml)] (15)

The curves are shown in Appendix H, Figure 1, and are asymptotic to the
straight lines log L(}_r,ml) = log 2k and log L(Xs“’z) = log 2%k .
Conditional false-alarm and conditional false-~dismissal probabilities
are calcviated for the optimum detector and for a suboptimum de'tector

for which the decision boundary is

log L(v,w ) + log L(v,w,) = 2 log k -% (16) -
where T
1 [ .2 .
d = — t) dt 1
0

The quantity d is a detection index and may be considered the post-detection

SNR,
For large values of d, the boundary given by Eq, (15) may be replaced

by its straight line asymptotes, and the false~alarm and false-dismissal

probabilities are given by

[ i
a é’%— 1 - 4‘\/% +\/-}z—1., log 2k) % + %—@( ‘\/%‘+\/—1§‘ log 2k) (18)
~ 1 [d' 1 a1
A =-E l—ﬁ ’\}E--\-/—.;? log 2k) l+§(‘\/>-u +.\-/-;_|10g 2k) (19)

5

where §(x) is the normal probability integral.
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For the "sum-and-test" detector, defined by the decision boundary in

Eq. (16), @ and B are given by

a =

N

-
a1 o
1-0 '\/-8 ————leng (20)

[ — l
. a' 1y
;- LMBWMJ @)

O e

From Appendix H, Fig, L, the performance of the sum-and-test de£ector
becomes progressively poorer than the optimum detector as d becomes larger,
It should be noted that the optimum detector for large d becomes a band-
splitting detector by virtue of the separate-decision criteria, The sum-
and-test detector is derived by omitting higher-order terms in the series
expansion for log 8(1). Thus Fig. U shows the effect of this omission.
The optimum or band-splitting decision schemc and the sum-and-test
decision scheme are also examined and compared for the general or m-

The decision boundary surface for the

frequency case, whare py = % .

m-dimensional space is given by

Sl
[™1s

r ;
eXy llog L(y_,wi)} =k (22)
1

e
1

and that for the sub-optinmm “sum-and-test" scheme by

m
E: log L(x,ua) =mlog k -~ (m=1) g (23)
i=1
The comparison betweon the performance ol the two detecctors is
carried out by cvaluating L' e ratio of the output SliR's for both systems

for equal falsc-alarm and false-dismissal probabilitics. This gives the

= 5] o

Aot

TR s SuRpen g

(4}
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ratio of the observation times recessary to achieve identical detection

0
performance in each case, These results are given in Appendix H, Fig. 6,

=one ]

and are reproduced in Table 3, for a =8 = ,01,

A

Ratio of detection indices
or integration times

/ '

| .d_ll_m 1 ikt 11 72
§ opt :

” Number of signal 1 2 16 128

frequencies - m

RS

Table 3 Ratio of Detection Indices for "Sum-and-Tsst!
and "Band-Splitting" Detectors; a == ,01

It can be secn from Table 3 that the advantage of the band-splitting

technique becomes groater and greater as the number of possible

frequencies increases, Thus the penalty paid by neglecting higher-

order terms in the series expansion for log 8(!) can be quite large.
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III, Detection of Directional Gaussian Signals in Isotropic Noise

In Appendix C a suboptimum detecticn scheme for processing the
outputs of M hydrophones is ovaluated, Non-zero correlation of the noise
components of the hydrophone oitputs is assumed, The suboptimum scheme
cengists of summing the outputs, and then passing the resulting voltage
through an Lckart filter, squarer, and low-pass filter,

The index used to compare the performance of the suboptimum detector
to that for the LR detector is the output signal-to-noise ratic defined

in a manner similar to that feund in Bq. (2):

e (av. output with signal) - (av. output--noise only) _ A(av. output) (L)
standard deviation of output with noise only D(output )

The index defined in Eq, (24) is actually analogous to the square root of
that found in Eq, (2), The denominator is evaluated with noise only since
we are concerned with throshold detection problems,

For the optimum or LR detector, the index has bsen shown to be

e 1/2
12 [[5) 2
ot " (; - G(a))) dw (25)

where S(w) and N(w) ere the signal and tho noise spectral densities

respactively and G(w) is the array gain dofined by Bryn6 and 15 given by

G(wn) = Tr[P(n) Q'l(n)] (26)

In Eq. (26) P(n) and Q(n) are the normalized correlation matrices of
signal and noise respsctively. For the array stecrcd on target and no

correlation betueen the noilse outputs at sach hydrophone, we have

P atREwER SR L ] (e =R

Zom ot o)
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The optimum detector for the case of no cross-correlation for the noise
components is identical to the suboptimum detector described previously.
The purpose of the study is the evaluation of the eifects of cross-
correlation for the noise components of different hydrophones,

The detection index for the suboptimmum system having a gengral

filter with the response function H(jw) is found to be

[s2]

2
[S(w ln joo)| dos

(28)

172

M M
‘H Jw zJ E:
1 h=1

In Eq. (28), Gih(w) is the cross-spectral density for the noise components
of the ith and hth hydrophones respectively. TFor a spherically isotropic

noise field, where dih is thc distance betwcen hydrophones i and h,

sin umih
Gy (0) = W(w) ———= (29)
“Tin
and
dih

UM (20

The Eckart filter has the characteristic

e S(w)

l}l(jw)l = A IR
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If one assumes further that
S
5@) _ 7 92 %
- (31)
N{w) 0 lm| > W
k )
then Eq, (28) reduces tc
p\M2 g %
r. == M= (32)
- | 2n N[ A M1 2 |M*
5 sin &nro
1+ﬂ 5—' (M- ¢) do
Z:& 8am°
0
for a linear array with elements having equal spacing d and Ty = % .

The best linear filter function for maximizing r in Eq. (28) is,
however, not the Eckart filter, tut is found in Eq. (33) by means of the
calculus of variations.2

: (o)
|H(0)| - B e (33)
Z ZG1h<‘°)
i=1 h=l
For this situation, and utilizing the assumptions in Eqs. (29) and (31),
Eq. (28) reduces to
2 M-1 2 M
o 2 5 ° ’ (; sin bt
== Myl fregp, -0 da (34)
N ML ot
)
¢=1 0

Table 5 gives the results of a numerical evaluation of Egs. (25), (32)

and (34) for a five-element linear array with 2-fi., spacing. The

/i
results are normalized with respect to (Two/Zn)l’2 M (SA) .

SRR

S v, ———
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Upper cut-off
frequency 1 2 3 5 10 15
keps

dstsctor

1. ILikelihood ratio

|

. 3

detector Eq. (25) .75 | 1,05 | 1,05 | 1.04 | 1.00 | 1.00%

2. Power detector with
Eckart filter Eq, (32)| .., L7 .55 .6l .15 .81

3. Power detector with _
optimunm filter L9 .90 .99 j 1.0l | 1,00 | 1.00

Eq, (3L)

Table 5 Normalized Performance Indices
as Functions of Upper Cut.Off
Frequency for Thres Detectors

From Table 5 it is easily seen that the detector with the Eckart
filter is measurably inferior to the other two detector systems, even for
reasonably high cut-off frequencies, However, the index for the power
detector with the optimum prefilter approaches that for the LR detector
even for reasonably low cut-off frequencies,

It is suspected that any simple prefilter having high-pass
characteristics with a cut-off frequency in the vicinity of 1250 cps
would yield a system with a performance index closely approaching that
of the detector with the optimum prefilter, All the optimum prefilter
does is to attenuate the frequency band over which appreciable correlation
exists between the nolse components from dlfferent hydrophones. Most
sonar systems are designed with high-pass characterisvics, so it is
unlikely that significant improvement can te obtained by changing

present system design,
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For the study in Appendix D, it is assumed that the noise outputs of
different hydrophones are not correlated, and that the noise power outputs
from different hydrophones are not the same, Likelihood-ratio detection
is examined and the results are compared to those for a system using
infinite clippars, which has been examined previously.l’3

The detection index defined in Eq, (24) for the LR detector is
1/2

dw ' (35)

r

M w
o fle

|
In Eq, (35), S is the s.gnal power at each hydrophone, N, is the noise
power at the ith hydrophone, and gs(w) and gn(w) are the normalized

signal and noise spectral densities respectively., The result in Eq. (35)

is equal to that in Eq. (27) for a LR detector with input SNR

M
2. 1N S
S WA

i=1

at each hydrophons, However, as stated previously, the LR detector with
the same SNR &t each hydrophone and no noise correlation between
hydrophones is equivalent to a simple power detector precesded by an
Eckart filtor,

Thus the LR detector for the case of different noise powers at each
hydrophone is instrumented by a gain control following each hydrophone,
followed by the pouer detector with an Eckart prefilter, The gain
settings are such that the SNR after swmnation for the system with

difrerent noise powers at each hydrophone is equal to that for the system

e TR

M

AR

T
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with equal noise powers at each nydrophons. VHth the use of this

equivalence, the gain settings ki are found to be

il
ki = (36)

and the average pover at the output of each gain control varies as ﬁ%
i
(" << W) .

The comparison between the LR detector and the power detector with
infinite clippers following the hydrophones is accomplished by comparing
each to a power detector without clippers. A ratio of performance indices
is used for the comparison, The ratio of the performance index for the

LR detector with thu k, determined by Eq. (36) to that for a power

detector with an Eckart prefilter (lci = 1) is

Topt 1 -1
Fl = = ;F Z Ni Z (Ni ) (37 )
I‘unclipped i=1 i=1

From previous WOrk,3 the ratio of the SNR for a power detector wivh

infinite clippers following the hydrophones to that for a detector without

the clippers can be found to be

¥, - _riipped _ g MQ(MZ 7 Z Z (N )‘1/2 yN} (38)

I‘unclipped i=1 J=i+l

For a simple numerical computation, it is assumed that exactly pM

hydrophones take on a hagh noise value NH and (1 ~p)M hydrophones take on

a low noise value NI' This seems reasonable since the noise values are
J

determined by known patterns of flow noise., Other statistical descriptions

are considered in Appendix D, If b = NH/IIL , Eq, (37) reduces to

&
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Fo=p°+ (1-p) + p(1-p)(b + b) (39)

and for large M Bq, (38) becomes

5 .
F, = .89{}3(}3-1/2-1) + l] [p(b—l) t 1! (Lo)

J

Equations (39) and (LO) are evaluated in Table 6 for p = % , Which

y.elds the maximum value of F1 and close to the maxdmum value of F2.

N
B,y 1 3 10 | 100 {1000
i

ro t

L = i 1.25 | 3.02 25 ¢50

Tunclipped

Telipped

___—PR--=F2 89 111 | 2.1 13.6 1 118

I.7«1n<:11pped

Table 6 Ratios of Performance Indices
for Different Values of Noise

Power Ratio

The results in Table 6 represent extreme values of improvement for
systems in which the noilse powers are known to vary between two limits.

The improvement factor Fl for the LR detector as NH/NI~——>“> is only

2/.89 tines the improvement factor for the standard detector with

infinite clippers.

Since practical situations involve noise povers distributed inside

a relative range of usually no more than 100 to 1, uith most of the noise
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povers near the lower level, the advantage gained by using the
instrumentation to set ki would be significantly less than 2/.89 ,
Moreover, the pogssibilities of nonstationarity, coupled with the
complexity of cstimating Ni to drive automatic gain control circuits,

makes the simplicity of the infinite clipper attractive.

IV, Random Bearing Errors

Appendix E contains a baslc study for determining the rdnimum
variance in estimating the time delay 6 between the signal compbnents
of the outputs of two hydrophones. The total outputs for the hydrophones
are given by s(t) + nl(t) and s(t=-6) + nz(t) . It is assumed that
signal and noise are gaussian and ideally limited to a band W cps wide,
and the noise components are not correlated. Signal and noise are thus
completely described by 2IW samples for an observation time T.

The data available to the estimator are given by the row vector

2= y) (L)

where
X = (g, X X55.en, Xony) (L2)
= (ylx }’2, y3:---: YZTW) (,43)

and
X, =8 5 + = (Lk)
i oW 2
1k i

LR R (—?-l-q) (1)

A well Jmowm theoremf of statistical estimabion states thal the

bost estimate, ki, of normelized time delay, k, has a varlance given by
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- { ) )
E[(k*-k)2J > Ei{—?—- log P(_{;k):,) (L6)

where P(¢;k) is the probability density function for £, and is a function

of the parameter to be estimated, The density function is gaussian and has
UTW dimensions.
1 il -1
P(e5k) = 175 e LN Y (b7)
2TW :
(2n) M

In Eq. (L7), M is the covariance matrix for £.
The operations on P(£;k) described in Eq, (L6) are tedious and require

extensive matrix manipul cion, The result obtained for the case k = 0 1is

AECEE IR I - -t
E[(k*- k)J > 2WT == log (2WT— 1)~ 5772
2
25
(L8)
When the usual assumptions WI >> 1 and N§_ , Ni << 1 are made, the
1 2
expression in Eq, (48) may be simplified and translated to a bearing
uncertainty with the relation
2 c 1 2 2
==+ = E|K*-k
e[S A [oc >} (19)
Thus
(i.n, 2 1/2
R I 2 13 ~3/2 n-1/2
o > S Wl (50)
0- d S 8n2

If the minimun cstimation error given by Lg. (L0) is attairable, it

can be attained Ly a maximum likelihood estimator. For wwclimum likelihood

estimation,

jo
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2 10g P(¢sk) = 0
oK =

mist be solved for k as a function of . This is extremely difficult to
do, but a nearly equivalent technique is to s%eer the array physically

or eiectronically until 6 = 0 . Since conventional estimation techniques
producc the rinimum valus of % in Eq, (50), ervors invclved in this
steering technique are not investigated.

The effects of nonstationary signal ~'"rength and alsc delay errors
due to the medium are also discussed briefly in Appendix E,

Appendix B contahs an analysis of the bearing uncertainty due to
processing errors in a conventional split-beam sonar system. In this
system (Fig. 1, Appendix B) thc outputs of each set of M hydrophones
from a linear, equally spaced array of 2M hydrophones arc summed, and each
sum is fed into a linear filter, The frequency response functions of
these fi'ters are related in that there is 900 phase shift between the
response functions at all frequencies., The filtered sums are passed
through infinite clippers, the results are multiplied, and the product
averaged wi.th a low-pass filter, The signal and noise are gaussian, and
the noilse components from different transducers are uncorrelated,

The voltapes following the summing operation are given by

v, (t) - f T]{t ] (1-1er ¢ (t) (51)
i=]
M

v (t) = Z sl[t - (j+1-1—-171‘} + nmj(:) (52)
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where T is the aignal time delay between adjacent hydrophones, The
frequency response functions of the linear filters enjoy the simple

minimm phase relation
H, (jo) = jok Hy(je) (53)

where k 1s a proportionality constant,

The average output of the low-pass filter is

: a
R (0)
N (sh)

(0) ()172
0) R (0
%)

in which Rx ; B, and R are cross~ and autocorrelation functions for

Ap X

A
the output voltages of the filters described in Eq. (53).

arecsin

<
1l
=i

o~

o

For threshold signal conditions (%? << 1) Eq. (5L) reduces to

co
{2 0
[ml}lB(jw)l gs(m) sin wMT sinc 9—2-1?1—'1: de
S

= 284
yao- T N[ © 1727 © 1/2 (55)
f 10| g, 0) 0 f (50| g, (0 a0

in which gs(w) and gn(m) are normalized signal and noise spectral densities,
as defined previously. It is easy to see that ¥y =0 for T =20,

The bearing uncertainty is defined by

o=-§0 & (56)

where o, 1s the standard deviation for the ocutnut of the final low-pass

fNlter,

g
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Evaluation of tie terms in Eq, (56) yields
T o 1/2
iy (50)] 6,7 0) a0
0¥ .SNQE)" (ﬁxl/z = (57)
1@) g (w) do
-

Employing the calculus of variations, one finds the minimum bearing

uncertainty to be

. SRV
¢ [s\h, el [ 28 i
O'O £ s (-N—h ((AL) w e dw (58)
min M g, (©)
0 ]
for
2 g, (w)
|5 (30)| = e —3 (59)
B B Q(w)
&y
In Eqe. (57) and (58), @ is the noise bandwidth of the low-pass filter,
In obtaining Eq. (57), an approximation is made which causes the
result to be approximately 20 per cent lower than the actual answer due
to the infinmite clipping action. Also it is demonstrated in Appendix F
that the result in Eq. (58) holds for even more general {ilter response
functions, HA(jw) and HB(jm),
With the usc of the spsctral model8
2
- ar
-w ar 1 £
83(@) = € Gn(w) = = —5 (60)
W
142
w
[o}]
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it is found that the minimum bearing uncertainty is

-1 1/k
o . * %i ?g) (mL)l/2 (%] / (har)a/)‘L radians (61)
min Md \ N

For M =25, c = 5000 ft/sec , d=2 ft, @ =1 rad/sec , r = 10 kyd ,

- oM
o = 6X107 s TJ = 0.1, wehave o, = ,0LJ degrees .
min

Two compariscns are carried out between systems with suboptimum
filters and the system with the filters specified by Eqs. (59) and (53).
In one case, for the system with the bandpass filter function

W

30,000

(1+j~9— j

e

Hp(jo) = b (62)

1+

]
g
30,000 45,000 60,000

the ratio of the bearing uncertainty to thc minimum value is below 2
from ranges of 20 kyd to below 1 kyd, At 3,3 kyd the ratioc is 1.03.
This investigation shows that optimum filter characteristics need not
be met exactly 1f performance closely approaching the optimum is
desired., Thie investigation also supports to some extent the statement
in Section IIT concerning the approximation of the characteristic
required by Lq. (33).

Since the bearing crror calculated above is not particularly large,
it is highly possible that other sources, such as medium inhomogencities,
conbribute sipnificant amounts.

A comparison with the resulb in g, (50) for the maximum likelihood
estimater to also possible,  If we seb =1 0 o = % , gs(w)/gn(w) = 1

Wf < 2nll and wove elscvhere N0 o= - N Lhen Egs, (58) and

.1‘\)1‘
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(50) become identical., The bearing uncertainty for the split-bsam system
considered here is therefore about 20 per cent greater than that for the
maximum-likelihood estimator due to approximations involved in obtaining
Eq. (57). The approximations were made for mathematical expressions that
were genorated due to the infinite clipping action.

Appendix I contains a study cf the bearing orrors generated by the
processing techmdques of a PUFFS tracking sonar system, The basic
elements of a PUFIS system are shown in Fig, 1, Appendix I, aud consist
of two hydrophones, two DElay LIne TImo Compressors,9 a polarity
coincidence indicator and summer, a digital-to-analog converter, and a
nonlinear Tilter called a WOX-1A tracker, The analysis of the system
is carricd out in general terms, and reference to specific numbers, which
might characterize particular systems, is not omphasized, The operation
of tho system is described in detail in Appendix I, Section I.

The system operation is such that the output voltage of the
hydrophone amplifiers are infinitqu clipped and time~sampled. These
samples from both chammels are processed in such a way as to give a
real-time estimate ol t. ¢ cross-correlation function between the signals
gencrated by the hydrophones. The usual assumptions of gaussian input
signals and noise, and zero noisc correlation betueon channcls, arc made,
The input SHR is also assumed to bo small. The WOX-1A tracker detcrmines
the timc volue of the peak of the estimated cross-correlaticn function by
employving a gate circuit which makes use of arca subtraction and a
nonlinear error-correction technique,

The analysis centers on determining the expressions for (1) the

K-point correlation estimate generace . by the two DELTIC processors and
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the polarity coincidence indicator and swmer, (2) the expected gate
circuit output, (3) the variance cf the gate circuit output, and (L) the
variance of the tracker output., The bearing uncertainty is calculated
from a relation almost identical to Eq, (56). The bearing uncertainty
represented by the random output of the gate circuit can be directly
compared to resvlts obtained in Appendix F,

A number of general results for bearing uncertainty are obtained in

Appendix I, but the simplest to present in this summary are found in

Eqs. (63) and (6h),

1/2
L n_ N p-l/2 16 3 G
CIQi -é-\—/?d 5 K T (rf - E) iy 1,2,3,-.. (63)
2
G
-1 1/2
g ==t Sl Vo g i‘(’f) & -3 (6k)
no2yZ T L
G
T = 2,3,)4,--.

Equation (63) represents a lower bound on bearing uncertainty and Eq. (6L),

an upper bound for the following condition:

= lel se
g (@) =g (0) =g ° (65)
0 }wl > @,

Also u%T = n, T is the time between signal samples, K is the number of
signal samples in the observation period, and G is the width of the gate
circuit in Eqs. (63) and (6L), The results hold only for integer values

of % .

o
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In order to compare these results to those in Eg, (57), we let

’ . n n
HB{Jw) =1, O = and O = . Ve get
1/2
_ ¢ N ..-1/2
% =5 sk T (66)

The ratios of the results in Egs. (63) and (6L) to those in Eq, (66)

give
y 2
G
- ﬂ3 }-l(-T-) -1 (9 ?_1-)1/2
72 T _ T~
b ETE) s )T
a
% (67)
%
L 2 o 3|2
T (172 (T‘ ’E)

N

For % = 1 , for which the gate width is approximately equal to the process

correlation time, the ratio alove has an upper bound of 3 and a lower bound

1/2 a
for higher T e

of unity, The ratio increases approximately as (%‘
These results and others included in Appendix I indicate that it is
desirable to use a fairly large gate width G for high gain or sensitivity.
However, for gate widths larger than the process correlation time, the
sensitivity does not incrcase greatly, The results algo show that the
bearing uncertainty incrcases as gate width gets larger than the process
corrclation time, but remains relatively constant for gatec widths less
than the correlation time. Thus a gate width cqual to the correlation
time of the process provides good sensitivity and low bearing uncertainty,

This choice scens te have been used in the design of the present PUFEFS

systems,
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The cfiect of the WOX-1A tracker as a nonlinecar filter that increases
observation time and decreases random bearing error is also discussed,

In Appendix F, the evalvation of bearing errors due to scattering
in a medium with a fluctvating refractive index is accomplished for a
gplit-bean system identical to that described in Appendix B, Results
taken from work by Chernovlo are employed in the analysis,

In particular, Chernov assumes a single-frequency plane-wave
propagating through a medium in which the variance of the refractive
index is <p?>. For typical sonar reception conditions, the variance
of the phase and log amplitude of the received signal at one location

after traveling through the random medivm a distance of r feet are

respectively

)-8 4

In Eq. (68) a is the correlation distance for the spatial fluctuations of
the refractive index, Aliso the following nornalized cross-coriclation

function holds for the outputs of two hydrophones broadside to the

direction of propagation:

R G R,y = g (69)

wherc ¢ is the scparation of *he two hydrophones,

The bearing uncertainty for the split-beam array of 2M hydrophoncs

broadside to the dircction of propagation is

1/2
M M /

/2 /2
12/ 2 !
Og i (71 <H > 8-) (Md Z & (P"l Z R k+M"i)
i=1 p=1 =1 k=1
(70)
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where .a2 d2

Rigy=e © (71)

The bearing uncertainty is seen to satisfy the inequality

% /2 /2 -
K — < g, << f-2 72
102 ) © M)

If M=25, d=2ft, r=230,000ftorl0kyd, a=2ft,
<“2> = 5Xl0-9 » ‘then Eq, (70) gives o, = 2,8 X].O"u degrees,

This nunerical result is an extremely small bearing error, Quite

LR, Soeds by RS

possibly the assumed valuelo of <p2> is several orders of magnitude
toc small, because more fluctuation of signal power is experimentally

observed than that given by Eq. (68) with <p,2>= 5 X10-9 . It is also

- LR Taatmtrai

worth noting that the analysis holds for single-frequency signals, It

is sxpected that fluctuations for broadband random signals are even

#
oae g

smaller, Certainly more work needs to be done in this area,
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I. Introduction

Earlier reportsl’2 have dealt with the optimum detection of signals
which were assumed to be gaussian random processes. It is known, however,
that various signals with more or less coherent time structure are
scmetimes observed, Tuteur2 considered the detection of a gaussian signal
whose power is amplitude modulated by a low frequency sinusoid of known
amplitude, phase and frequency, This report considers the optimum
detection of certain baseband signals which are typically observed in
the frequency range near 100 c,p.s. There is reascn to believe that
these signals are periodic time functions with coherent phass structure,
but the frequencies are not known precisely.

For convenience in this analysis the signal is taken to be a steady
einusoid with known amplitude but unknown frequency and phase, Since in
practice the amplitude of such a signal would not be known precisely,
the results are to Yo considered as upper bounds on the performance of

the detection system,

Two general cases are considered, one in which the frequency of the

sinusoid is known to be one of a finite discrete set of frequencies, the
other in which the frequency is given by a flat, unimodal probability
donsity function (p.d.f.) over the and of frequency uncertainty,

II, Likelihood Ratio Detection of General Signals in Additive Gaussian Noise

The general theory of likelihood ratio (hereafter LR) detection of
signals in additive gaussian noise has been ovtlined by several authors.3’h
In this section we follow rather closely Middleton'sh development of the

form of the optirmm LR detector,
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Here and throughout this report we shall assume the following:

1) The desired signal is deterninistic, though its functional form
will in general include certain parameters the values of which are not
known except statistically, The stochastic parameters are assumed
independent,

2) The noisc is additive and gaussian with zero mean,

3) The signal and noise processes are independent,

The general technique for developing the form of the optimum detector
can be applied equally well for continuous signals or for discrete
(sampled) signals, However, in order to keep the derivation simple and
to obviate the necessity of discussing integral equations, we shall
treat the discrete case, The various time-sampled signal functions
and noise functions then take the forms of signal vectors and noise
vectors, The samples are assumed to be uniformly spaced in time, though
we do not make use of this assumption in this secfion.

The received signal vector is given by
y=s+n (1)
where 8 i1s the "desired signal" vector and n is the noise vector (horeafter

simply referred to as the received signal, the desired sign: 1 and the

noise ),

The optimum detcctor forms the LR
/s
S

——— (2)
£(v/0)

¢(v) =

t(v/s) and f(v/o) are conditional probability density functions (p.d.f.'3)

for the received signal given that the desired signal 1 precent and given

I
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no signal present, respectively, The averaging operation (: > indicates
S

a statistical averagec over the set S of signal parameters. Since the

noise is additive and gaussian with zero mean, we have

- Hv-8) K Hv-s)
£(v/s) = 1 o 202 (2)
- (2 )r\/2(dot K)n/2
and
&'kl
£(v/0) = : == = | (L)

)2 (dt )7 ®

whore X is the covariance matrix of the noise. From Eq, (2) we can write

1 11 pl I |
- 5(v-8) K™ (v-s) K
3(z)=(e 2= 2 !E/} eﬂ"x 5)
L'l el
A B EeEE x> ”
\ S

The LR thus calculated is compared tc a fixed threshold and if the threshcld
19 exceeded, the decision is made that the desired signal is present,

To derive the form of the optimum detector, we 1) expand the
exponential form in Eq, (6) in a power series, 2) perform the averaging

<' > term by term, and 3) expand ¢én £(v) in another power series, The
S

quantity ¢n Z(z), rather than ¢(v), is usually taken to be the test

statistic in a LR detector., One reason is that <¢n 6(2) is more readily

interpretable in terms of electronic correlation and filtering operations.

For the caso of low input signal-to-noise ratio, we shall be ablo to find

1 suitable approximation to the optimum detector by ncglecting certain

higher order terms in the signal,
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The aforementioned steps arc straightforward, and the following

g. pansion can easily be verified:

(K /(s '5"11)2> - (§'5'11)2§'§'13>J

+ 3 f<§_'£ *s 3'5'1x> <§'5'11> - <§'.*£'la> é'_ls‘l_wz}?J

' [’a’lﬁ ('™ )h> -5 (8 1z>3> (K™Y - § 49'5‘1*/)2 :
Ay,

+ o) (7)

whero < > implies < > throughout, Equation (7) is exact through
S

O(_Qh)° We note that if the structure of the desired signal 1s known

completely, the averaging opcration <’> over unknown signal parameters

is trivial, and each of the seven brackcted terms in Eq. (7) is

identically equal to zcro, Tn such a case the optimum detector would

perform the following opcration:

g
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o
in¢(v) = sk L . % s K s (8)

a result which can be verified from Eq, (&),

Noting that

5y, - (2)8' Ky (9

we can distingaish two different classcs of optimum detection:

1) If <_§_> # 0, the optimum detection process is considered to be
S .

"ecoheront," In such a case, Eq, (7) contains a term which is linear in Y.
In the threshold case of low input SNR, the principal contribution to

én &(v) is from the lincar torm and the higher order terms can be

nogloctod or replaced by appropriate average values, The optimum detection
operation is then approximately a cross-correlation of the receivod signal
with a replica of the desired signal,

2) If <§>S = 0, the optimum detection process is said to be

"incoherent," In such a case, the linear term in Eq, (7) disappears and
the principal contribution to én £(v) is from a second order torm
representing a square law operation on the received signal., As in case 1),
higher order terms in (EIK"IX)Q are either neglocted or roplaced by
appropriato average values, such average values being takon into the

bias in the threshold comparison,

III. LR Detection of a Sine Wave with Unknowvm Froquency and Phasc--

Discrete Frequency Distiribution

In this scction we shall consider the problem of dotecting, in the
presenco of additive gaussian noisc, a steady sine wave whosc ampiitude

is known but whose frecuency and phase are statistically described,
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{
III, 1. The Form of the Detector Eﬁ
Vle consider the desired signal, in continuous form, to be %
s(t) = A cos(wt - ) (10) g
In sampled form, '
s = A{cos(wt;i o ¢)} (11) é
€
The radian frequency « and the phase @ are unknown but their ?
probability distributions are known, Let us assume that the phase @ is
uniformly distributed from O to 2n, i,e., E
{
. 0 <f <2n
B oose |
p(#) =< (12)
0 elsewhere }
L
We shall assume that the frequency is equally likely to be one of m ]
different frequencies: .
1 I
P) =2 , 1=1,2, .yym (13) N

In deriving the form of the optimum detector, we are concerned with

two terms which represent linear and square law operations on the received

signal, respectively. They are:

(s'K"lv>S = <,§>; fly_ (1k)
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where

ICDI

SNCEN Y (16)

We see then that the desired signal s enters into the detector operation

through the forms <§ > and <s §_£> . Averaging over phase first,
S S

oen

{a>¢= gl cos(aty - p) op

{o} (a7)

Thus tre optimum detection is "incoherent," Turning to the nonlinear term,

2n
2
<_§ _s_'% a %—{ cos(mt.i - B) cos(wtj ~ @) ag
0
2n 2n
2 2
- %; % cos[m(bi + tj) = ?ﬂﬂ ag + %i/r % cos co(ti - tj) dg
0 0
42 )
= ¢ 7= o3 m(ti 5 tj)} (18)
and, averaging over frequency,
, m
(s a'}yj {52 ) cos q(t; - b)) (19)
o k=1

In Eq. (7) the linear tevm and the third ordsr terms (in 8) disappear,
The most significant fourth order terms (in 8) are replaced by their

averages taken in the absence of desired signal, The detector operation

is then approximately
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tn 4(V>’=”%z”§x-%<§'§‘l_s_\
S
2 2 2
2 -1 1/ -1> -1 1 11
+( -5 (s K s + s K s (s K v)/g- (sKv)/}
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(20)
We note that
<‘3’Khls> =/ >—js s Kt
-~ s \ =t
i S
o
- 7 -1
) Z ._J\SiSJ>S Klj
i
= tr (4 G) (21)
L.
sK v) vGv
= tr (K G) (22)
2\
- 3 _S.Ez =-g<<191)>
1/ e \
= vavv3iv
CEEL
- opte T -y (kD) (23)
Substituting Eqs. (21), (22) and (23) into Eq. (20), we obtain
| vy Lt (K0) -t KT (21)
in 5{EJ—§£_E~§-...I {_.i -E oAb
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The operation of the optimum detector for the case of a sine wave
with unknown frequency and unknoun phase is given by the incoherent form
- !
Eq. (2L), where G is given by Eq. (16) and <_s__§) by Eq. (19).
S

Ouvput Signal-to-Noise Ratio

Since we shall be concerned in this report with cases of incoherent
detection, we shall now derive an expression for a performance index
which we can use to make compari; . among various optimum and sub-optimum

detection schemes, A definition - € output signal-to-noise ratie which has

been used in earlier reports is

2
[<8n 8(X)>S+N- <£n 6(321]

<[8n 6(1)]2 - <8n z(x)>; (25)

For convenience, we shall use this definition here,

From Eq. (2L), above,

1 1 — 1 1O

¢ - Gv) ~2tr (KG) -+ tr (KG)

<m (X»&N 3 !_!2”\1 A e Thy S
=l<(s'+n,)5(s+n> -%tr(l{f}') %tr(KG)g

JAE T /s -7

- ftr (KT (26)
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2
(27)

Therefore,

<zn e(_xg%m - <én e(xz = % tr (K §)2 (28)

2
=gt (KO + 5 [tr ( g)z] (29)

Therefore,

<[£n “K{l} o <8n (v >; 3 %— tr (K @2 (30)

}R«%—tr(gé_) ’ (1)
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III., 2., Detection in White Noise

‘ A1)

f

If the background noise is white and wide-sense stationary, the

covariance matrix for the noise, K, is a iiiagonal matrix and is given by

K=NI (32)

where N is the noise power and I is the unit matrix, Therefore,

2mN

2 | B ‘
A |
- _.._2{ ;lcTs “k(ti = tj) | (33)

The operation on the received signal is tfxen

vivi sin %ti sin mktj

It is infcrmative to approximate the irmer summations by integrations:

T

|

2 n 2
/
v# co8 mkti) + k Z‘ vy sin Oicti)
i=1
| (3k)
2 T 2 |
v(t) cos mKt dt) +([v(t) sin uﬁ(t dt)

0

(35) -]




A-12

where 4 is the time interval between uniformly spaced samples and T is the
observation time of the received signal,

Thus the optimum Jetector consists of a bank of m pairs of correlators
and squarers followed by an adder and a threshold device. These operations
are snown in Figure 1, The correlators in the detector, shown typically
in the dashed box in Fig. 1, can be implemented by matched filters;

It is cleer that if the uncertainty about the frequency of the sine
wave is enlarged to a greater and greater number of discrete frequencies,
we simply incorporate more and more pairs of correlators and squarers
into the detector, It is also clear from Eq, (35) that if the probabilities
of the m discrete frequencies are not uniform, the m terms in the
sunmation are simply weighted according to the probabil ties of the
various frequencies, In terms of the actual detector, the m inputs to
the adder are appropriately weighted.

ITI, 3. Detection in Non-White Noise

If the noise background is non-white, the covariance matrix K is

no longer diagonal, and the matrix E becomes in general

= I =
Gegt sy KT
S
2 B |
IS N N -1
= K = C“,COS oﬁ{(ti o tj) K
=
5 M
_ A =15 . q . ~1
= E: K™ ¢cos @t cos aktj + sin @ t, sin aktj K (36)
k=1
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The operation on the received signal then becomes

o M
1 - .
% vGys= %ﬁ 3’5 1 cos “kti cos thj 13
k=1
p M
A -l =1
+-LTm- vK {sinml(tisinaktj 1{_ v
k=1
5 m n n 2
2 A §: Ej v K'l cos @t
i VIR T %"
k=1 1i=1 j=1
2
Z (Z Z v, K75 sin wkt.) (37)
k=l i=1 j=1

IV, LR Detection of a Sine Wave with Unknown Frequency and Phase--

Continuous Frequency Distribution

A more general kind of uncertainty about the frequency of the sine

wave 1s one in which the unknown frequency has a p.d.f. over a range of
the spectrum, In this section we assume that the frequency is known only
to lie between certain upper and lower limits, For conveniencelwe shall
assume that the p.d.f. is flat and unimodal.

IV, 1. The Form of the Optimum Detector

As in sections III,1 through II1I,3, the desired sipral in continuous
form is taken to be

s{t) = A cos (at - @) (38)

and in sampled form,

3 =A {cos (ami = ﬁ)} (39)

The phase @ is assumed to be uniformly distributed over O, 2n and

the radian frequency ® to be uniformly distributed over & band @ rad/secc

wido centered a. w rad/sec, i,e.,
o
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o 0 =i/ <in
p(f) = ¢ (Lo)
0 elsaeuere
\
and
1 :.‘2 < o :R
[ “vT 2902 % |
p(w) = “11.)‘
0 elsevncre

As before [seo L. (172],

4 -f

and the optimum detector is termed "incoherent." The operstion on the

received signal is thus

'
il

1

= -1-. ' _l / [} ' i '"l » " ! \
TRl T (13)

N

; )
Carrying out the averaging <§'§Ug over B and w, we hove {irst % aoiy B,
(18)]

2 1
<_s‘ _3_2 = % cos w(t',i = 't',j)_} (L)

Averaging over o,
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e 4 f Q(t )
W !
g"’% - ¢ sine ..,_.w__,‘j__ cos @ (t -t.)
= ! n J
L
13 b £ by = by) cos a(t; - by) (45)
i whore 2
i w30 mx
ine X B e (L6)
K
=
B on (L7)

beration of the optimum detcctolr upon the received signal is therefore

»
&h

s & e -
Gy m & K 1!3inc @ (ti - tj) cos a)o(ti - tj) X 11 (L8)

(AR
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W, 2, Deteetion in White Nolno

Broadband Low-~Pass Whlt“ Wodse

Ve ahal) now consider a case In which the power density spectrum of

the neise 49 fliat with amplituds Nﬂ watts/rad/sec over the frequency
range O,W rad/ssc and cortains no power in frequencies greater than W, i.e.,

NoeWN (L9)

L
Uaing well-known results” of sampling analysis, we can assume that

cooodea of the noiso n(t) will be uncorrelated (and hence statistically

i endent, sinece the nolse is gaussian) if samples arc taken at time

anborials

1
b = (50)
2 X bandwidth in c.p,s.

A= L (51)




It is assumed that W is greater than the hignest possible signal
frequency, i,e., W > w g , and that WI >>1 , Under these
assumptions, all of the information in the received continuous signal
v(t), observed during the interval (0,T), will be contained in the
samples taken at intervals of % 5

For thec noise spectrum and sampling procedurc described, the

covariance matrix K is diagonal and Eq. (L8) becomes

2
1t A 1] q
52_(}_&—-’:1\1—,53 {smc@(ti = tj)co:, coo(ti -tj)} v
, B M
, AZZ ; t, - %) cos o (b, -t,) (52)
= EE? vyv, sinc b ( g - by) cos o (b -t :
i=1 j=1

The operation of the optimum detector upon the received signal is thus

given by the quadratic form Eg. (52), The output signal-to-noise ratio R,

from Eq. (31), is

— \_
u n n 2
A .
= E‘F z Z I:slnc E (ti - tj) cos a)o(ti = tj)] (53)
i=1 j=1
For purposes of computation, we obtain an approximation to R: for
w >> ¢ and @T >>1, 0052 w (t, - t,) can be replaced by its
0 0 o1 ]
1
average value, > B s and
A ok Y 2
R= = ;Z: } sinc § (t, -t,) (54)
16N° - o
i=1 j=1 -

et filntmen o - P
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Replacing the double summation in Eq, (5L) by a double integration we

cbtain a further approximation:

1 T
L 2
R’é’i‘&_,%Jdtjdosinceﬁ(t-o)
n J
0 0
T T
EF L
- . dx| dy sinc“(x ~ y) (55)

LN g |
SE o ¢

The output SNR, as given by Eq. (54), is plotted in Fig, 2 for
W =10 Q. As the noise bandwidth W becomes very mich larger than , the
summation in Eq, (53) converges to the integral in Eq. (55). Eq. (55)
can thus be regarded as the output SNR for the case of continuous filtering.
From the figure it can be seen that a suitable approximation to R

for reasonably long integration time, i.,e,, for §T >1, is

R=—-'g'-§§T (55a)

Rewriting Eq, (55a) slightly,

alh

R¥ iy (55b)
Bn No 9

In this form we see that R is proportional to obscrvation time T and
inverscly proportional to the bandwidth of signal frequency uncertainty R,

Idcally Filterced White Noise

If at the detector it is known with certainty that the frequency of
the dosired signal lies betwcen the strict limits o - g, o +3,
then prior to detection, the incording signal should bo filtered to remove

211 noisc powver outside those frequency limits, Ve shall now consider

1)
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such a case and shall assume that the filtering is ideal, so that the noise

w +

5 d
y O+ 5, an is zero

h F-e

spectral level after filtering is NO within -
elsewhere, Ve then have N = NO Q.

For such strictly bend-limited noise, we can cheosc a sampling
interval so that the samples of the aoise will be completely uncorrelated,

Sampling thcory dictates” tiiat such samples be taken at intervals L3

where Q = 2n § . In order that the noise be completely specificd by the
sample valucs, it is nccessary to sample both the noise waveform n(t) and
its Hilbert transform h(t), These sample values, taken ot the same
sampling instant, cre combincd into a "complex sample," n(ti) + 3 h(ti) .
Applying thesc idcas to the detection problem at hand, wo can simply
rcplace v in Eq, (52) by v + jn wherc u represents the sampled Hilbort
transform of v(t)., Tor §fP >> 1 , all of the information in tho roceived
signal v(t) will be contained in the complex samples v(ti) + 3 u(ti)

. 1 . . . g
taken at intervals —. The noisc covariance matrix is again diagonal.

Thus, rewriting Eq. (52) for tkc band-pass case,

'
S('-3u )8 (w3

, N
AN .
= £§§ }Jl }_}}(vtvj + uiuj) sine § (ti - tj) cos mo(ti - tj) (56)
i=1 J-1

wqurmw,r1=§T.

3 . . . .
For an excellent discussion of sampling analysis, sec Woodward,-
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Hewaver, we note thot

1 b = b

sinc@'(ti-tj) - (57)
0 (b, - t,) = k=
\ Lo ]

Therefore all tho cross-terms in Eq, (56) disappear, and we are left with

vz(iL) (59)

A REES I RE IR SNVRT (58)
i
Buts
5
i 2/1) o
=)+
&

and Eq. (58) can be rowritton as

v'Iv (60)

lcar

n
byTa-dy Oy
SEETW LM Tt
where n = 2 ﬁih The oxprossions in Eq, (60) are recognizod as discrote
forms of th~ oporations performed by a square~law dovice and integrator,
We conclude thon that the optimum detector for the casoc of white noiue

ideally filtered to tho band of signal froquency uncertainty is a square

law devico followed by an integrator,

Lubput SNR
To calculate the output SNR, wo shall consider the square-law devico

in its continuous form, i,e,, the detector output is taken to be vg(t) dt .

The derivation of R is straightforward, and the rosult is given herc, the

dotails boing left to Appondix A,
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However, we note thot

(1 ti = tj
sinc § (ti - tj) = (57)
0 (b - t,) = k=
X = 2 )
Therofore all tho cross-terms in Eq. (56) disappear, and we are left with
| ]
1,0, =y LAl 2. 2
g(l’.'JP.)Q\Y."JEI"&'gZ(Vi*ui) (58) !
3

9T 2%
LWL e

and Eq. (58) can be rowritton as

ol
1]

2 & 2
! A 2 A !
y = v, = vIv {(60)
Vi Z&? EL; i Z;Z L

whero n = 2 §'P. The oxpressions in Eq, (60) are recognizod as discrote
forms of the oporations porformed by a squarc~low device and integrator,
We conclude then that the optimum detector for the casoc of white noiso

ideally filiered to tho band of slgnal froquoncy uncertainty is a square

law dovico followed by an integrator,

Output SNR

To calculate the output SNR, we shall consider the square-law device

in its continuous form, i,e,, the detector output is takon to be grvz(t) dat .
The derivation of R 1s straightforward, and the result is given hero, the

details being left to Appondix A,
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b2
~ AT T (61)

pr g7
16 n2No‘ J{ dx J( dy sincz(x -y)
0 0

This is plotted in Fig, 2 as a function of §'r. It is seen from the
figure that the curve for R vs, §'T for this case of ideally filtered white
noise is identical in form to the corresponding curve for the case of
broadband white noise, except for a constant vertical displacement. This
result is misleading since it seems to indicate that one can impréve upon
the performance of the optimum detector derived for the broadband white
noise case simply by pre-filtering the noise to the band of signal
frequency uncertainty. However, this cannot be the case in view of the
known optimality of LR detection, The cause of this discrepancy lies in
the assumed nature of the ideal pre-filtering operation, In deriving
Eq. (61) it was assumed that the filter w.s operating in a steady-state
condition, i,e., that thc received signal was applied to the filter a
long time before the start of the observation period (0, T), ‘his,
however, is a false assumption, since the received signal is available
only during the period (0, T), An analysis which takes into account
the transient operation of the filter is rat .cr involved and is taken up
in Appendix B. The output SNR for such @ short-term filtcr followed by
a squarer and integrator is derived but 1s not easily evaluable. liowever,
it can be shown that for large and small valucs of §’P regpectively, the
SNR behaves as does R for the original case of optimum detection in
broadband white noise.

It is thereforc conjectured that the optimum procedure for the

dotection of a steady sine wave of unknown frequency in a background of
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white noise consists of a filtering of the received signal to the band
of signal frequency uncertainty followed by squaring and integration,

V., Comparison with the Optimal Detection of a Gaussian Signal

It is of interest to compare the results obtained thus far with the

case of optimal detection of a gaussian random signal in a background of
gaussian noise, The question to be answered is whether or not a periodic
signal with unknown frequency is more detectable than a gaussian random

signal of the same average power having a power spectral density over

the sams band of uncertainty. The results of Tuteur2 are applicable

in this case,

Adapting Tuteur's Eq, (13) we find that the operation to be performed

by the LR detector to detect a gaussian signal in gaussian noise is

5'1v + Bias terms (62)

-
o ov) =5 K

iz’

where P is the covariance matrix of the signal. If the power spectral

A Q
density of the signal is flat over the frequency band (wo - g ) @ t s )
2
with total average power %— , then
A -
P =¢ 7 sinc § (ti = tj) cos coo(ti o tj) (63)
!
But this is seen to be identical to the matrix <s_ 5) derived in
S
Section IV,1, Therefore
| . =) | - ! -
L v K 1P K v = & v K 1 ] bl> K 1v
2 == == = 2 — - it/ Sl
' (6L))

2

O
1<
1ot
i<




Thus the optimum detector for the case of a gaussian signal with a
flat spectral density over a given frequency band is identical to the
detector derived in Section IV.1 for the case of a sine wave whose
frequency has a flut p.d.f. over the same band. The same gaussian noise
background is assumed in e ch case, The output SNR, R, is also the
same in the two cases [See Tuteur, Eq, (205]. We therefore concluds
that if the desired signal is known only to 1ie between certain upper
and lower frequency limits, there is no advantage to be gained from
knowledge that the signal is periodic rather than random and gaussian,
In eitber case, the optimum detector consists of a filter matched to

the signal band followed by a syuarer and integrator

VI. Detection with a Hydrophone Array

We have up to thls point considered signal processing with a single
hydrophone. Let us now assume that an array of M hydrophones is used
to detect the desired signal in a three-dimensional i:sotropic gaussian
noise field, For such a noise background, it can be shoWn6 that the cros
correlation function for noise ocutpuvs from two separated hydrophones is

given by T+’CS
1 ! |
R{T,T‘i}ﬂ-l—f R(t)dz
ETS
TT;

4
where 1T = —
5 e

(I
between the two hydrophones when the speed of sound in water is ¢, R (<
is the a.c.f. {or th noilse arriving at any one hydrophone. W2 note that

. ! !
Eq. (65) simply represents the average value of R (T ) over an interval

'ZTS wide centered at v,

A-22

Se

(65)

is the time required for a signal to travel the spacing, d,

)
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The verious signal and noise vectors v, 8 and n are now taken to be
t -
nXM-dimensional vectors and the matrices K, \is_ 3 > , G and I ave taken
S

to be nXM-dimensional matrices. It will be assumed that the array is

'> will consist of an

being steered "on target" so that the matrix <§_§
3

MXM matrix of identical nXn submatrices,

Broadbaqg White Noise Background--Hydrophone Array

If the noise background is white with finite power and essentially

infinite bandwidth, it can easily be shown that the noise covariance

matrix K 1s diagonal., Assuming the desired signal to be es described

in Section IV, i,e,, a steady sine wave whose phase and frequency are

described by p.d.f.'s, the matrix <_s_ _s_'> 1s an MXM matrix of nXn
S

submatrices, each identical to the form in Eq. (L45), derived for the

case of a single hydrophone, The n)M matrix § for the array case is

given by

g=3 ; 66)
& Ezéﬂ% (

and is itself a matrix of identical submatrices.

Thus it can easily be verified that the optimum detector sums the
signals picked up at the M hydrophones, and performs the quadratic
operation z'g v where v is now the output of the summer and g is
identical to the form originally derived in Section IV.2 for the single

nydrophone case, We have previously conjectured that the continuous
Y
form of the operation v G v consists of a filtering to the signal

band (mo - g A + g ) followed by squaring and integrating,

The nX M matrix ¥ G is

(Y]]
tt
=z
T
tw

[

~

O~

g
-




It can readily be verified that for the arrey case
T

T
L
2tr (5 h_N“ig.s?fdx[ dy sinc?(x ~ y) (68)
° 1 o

In other words, for the case of broadband white noise, the output
signal-to-noise ratio with the array of M hydrophones is M2 times that
with a single hydrophone [énupare with Eq, (55)].

Note on the Threshold Analysis

In obtaining the form of the optimum detection operation from Eq, (7),
for the case of a single hydrophone, we assumed that threshold conditions
prevailad, 1.e., the input SNR was low and higher order terms in the SNR
could be neglected, In terms of the specific problems treated this

implied for the single hydrophone case

A2
<< 1 (69)

It should be noted that for the M-array case, the equivalent

oondition 1s that

MAC << 1 (70)

VII, Outnut SNR with a Sub-optimum Incoherent Detector

One may wish to conpare the performance of the optimum incoherent
detector with some sub-optimum detector, For that purpose we next shall
derive a compact expression for the output SNR, R, of a general incoherent

detector which forms the test statistic

i(w) =y Fy (71)
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The matrix F is an nXn matrix in the single hydrophone case, which we
shall consider first, The quentity .Y‘E v can be thought of (in
continuous form) as the squared output of a filter which is not necessarily
time~invariant, subsequently integrated over the observation time of the
received signal. The interpretation of F can be made as follows:

Let the discrete form of the filter weighting function be an nXn
matrix H, and let the output of the filter be the vector Y=H v .*

1
The squared and summer filter output is then v H'H v , Thus, letting

L !
yHEY = vEv (72)

we haove

F = HH (i3)

Now the output SNR is to be found, The calculations of the required
averages are similar to those in deriving Eqs. (26), (27) and (29). The

following can easily be shown:

<d(y')S+N = tr <§ _q'%_F_) +tr (KF) (74)
@Q%=tr@g) (75)

112
<fd(y_)J/% = 2tr (KF)° + tr° (K F) (76)

Thus, from Eg. (25),

R = — (17)
2 tr (K E)z

"More explicitly, Yi = L,Hijvj . If the filter is to bc realizable,
3
Lhen Y.1 =0 for 1 <j, for any v. This is assured if Hij =0 fer 1 <3,

tius H is "lower diaponal" in such a case,
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Let us now use Eq, (77) to calculate the output SNR for the case
considered earlier, i,e,, the case of a steady sinusoid whose frequency
lies somewhere in a band @ rad/sec wide centered at @, Let us assume
the noise is white and strictly cut-off at W rad/sec, In such a case,

Qé_gt} is given by Eq, (L5) as before. Here F simply represents the
4 2

square-and-add operation and so

Fe=1 (78)
Since the noise is white,
K = NI (79)
Thus, from Eq. (77) we have

L L

nA A
R=—5 = ——sWl (80)

81 Bnl

where n = vt . It is clear of course that the result Ea, (80) does not
i

depend in any way upon the uncertainty about signal frequency, However,
Eq, (80) can be rewritten in a more interesting form:

R = m—,—?"‘h (9)§T W> g @)

¥ s > 2
IN “° \W
0

This is seen to be identical to Eq, (55a) except for the factor % . Thus

we can summarize:

If the background noise is white over & band (C, W) , the optimum LR
detector consists of a filter matched to the band of signal frequency
uncertainty ®, where W > @ , followed by a squarer and an integrator.
If, however, tlie received signal is not filtered before detection but is
simply squared and integrated, the output SNR derived for the cptinum

detector must be multiplied by the factor % .
¥



TR ST fasy: A

AT AT

s

A-27

VIII, OSub-optimum Detection--Hydrophone Array

i<

If an M-hydrophone array is used, the operation equivalent to X'E
in Eq. (71) consists of summing the outputs from the M hydrophones and
then using the summer output in the quadratic form E’_B: v.

If the background noise is broadband white, and the array is steered

on target, it can easily be verified that the output SNR is

I B s Ak
LN 2 SZ2

0

1eab {3 ) o .

I¥. Conclusions

There is evidence that the low frecuency portion of received signal
spectrum contains certain coherent signals which may be used as a basis

for detection, It had been hoped that advantage could be taken of the

periodic nature of these signals to perform some form of coherent

detection and thereby enhance signal detectability, However, the lack

of precise knowledge about the frequency of the periodicity is a stumbling

block, If the frecvency is known only to lie within certain upper and

lower 1limits, then the optimum detection procedure is an iucoherent one,

i,e., an energy measurement of the received signal, Coherent detection
is, generally speaking, cross-correlation with a replica of the desired

signal, However, effective cross-correlation requires at least a

knowledge of the frequency or fundamental frequency of the signal, This
in a nutshell is why the optimum detection scheme for the case we have
considered is not a coherent scheme,

A comparison of the case of a sinusoidal signal of unknown frequency

and phase with the case of a gaussian random signal shows that in either

case the optimum LR detector has the same form, i,e., a purely incoherent




A -28

detector, This indicates that a periodic signal of unknown frequency is no
more deteotable than & gaussian random signal of the same -power confined ‘to
the same freouency band. This is a surprising result, but onc which follows
quite clearly from a straightforward application of the general theory of
optimal (minimum average risk) detection as outlined by Middleton,

Even though the unknown signal frequency may have a value anywhere in
a given region of uncertainty, it seems intuitively that one should be able
to make use of the fact that in the observation interval at hand, the signal
frequency takes on but one of its possible values for the entire interval,
With this idea in mind, a detection scheme has been considered in which the
overall band of signal frequency uncertainty is split up into a number of
sub-bands. The SNE is thus enhanced in one -ub-band, that which contains
the signal, Each of the sub-bands is then processed by means of an incoherent
threshold detector and a final decision is made on the basis of the outputs
of thé sub-band detectors, Preliminary results indicate that this scheme
wculd perform better than the "optimum" detector derived in this report.
Presumably, the same improvement would be exhibitéd if the signal were not
a pure sinusoid but & narrow-band signal whose cente: frequency was not
known exactly. Ir such a case the width of each sub-band would be chosen
approximately equal to the width of the narrow-band signal,

This result brings up scme serious questions regarding the supposed
optimality of LR detection, since this arbitrary band-spiitting operation
ia not dictated by the results of the general optimum detection analysis.
Therefore the general detection problem, as analyzed from the Bayes'!
risk point of view, is presently being re-examined., This investigation,
as well as the analysis of the band-splitting scheme, will be subjects

of later reports,

e 0
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Appendix A

Square Law Detector I--Idsal Filtering

band-gass filipr squarer integrator
v |
T
v(t) [ _ x(t) y(t) j
0 @ X 0
- I

Figure A-1 Square Law Detector

The detector output, i.e,, the test statistic to be used in the

threshold comparison, is
&= xz(t) dt

where

x(t) = v(t) h(t - ¢) dt
00
and h(T) is the weighting function for a rcctangular filter matched tc
the band of signal fregquency uncertainty, The (-») value of the lower
1limlt in Eq, (A-2) implies that the filter is operating in a "steady-

state" condition, The background noisa contained in v(t) is assumed to

be flat over a broad band,

The output SNR will be taken as normalized deflection-squared, as

before., The nccessary averages are calculated as follows:

//HF
ol re + L e
at | “(t) + 2 s(t) nF(t) Ng (ti] »

where nF(t) is the noise at the output of the filter.
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(A-1)

(a-2)

(A-3)
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[j <(t)nF(o>
f[dow o2 - o

: N02$a2T2 + 2] dt [ do RFz(t - ) (A-5)
0 0

et

where RF(T) is the a.c.f, for nF(t).

Thus,
(4-6)

A p2
iy T
2 |
8 | dt | do Ry (t - o) _
: . ! K .
For the rectangular filter with flat response over (wo -, 0t 5) ,

HF(t = Gl 2 NOR sinc § (t - o) cos wo(t - 0) (A-7)

By
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Thus in this case

o

2 R = Ah Tz
& T
22 [ 2 7 2
: CR ‘/ dt | do sine” § (t - o) cos® @ (t - o)
L o
b 2
. A% T
- T (A’B)
b,Nzgefdtf do stnc® § (¢ - o)
0
0o 0
‘ or,
{ =~
R ¥ 82 (4-9)

| T
16 HEH: dx [ﬂ}r HinnE{x -7)

0
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Square Law Detector II--Short-Term Filtering

In this Appendix vie assume that the pre-detection filter cannot operate
on the infinite past history of the received signal v(t) as was assumed in
the previovs Appendix ,:See Eq. (A-2 )} . Instead, the filter is allowed to
weight cnly as moch of v(1) as is available at any time in the observation

interval (0 <t <T) . With this restriction, x(t) now takes the form

t
x(t) =[ v(t) h(t - 1) dt (B-1)
0
Again,
T .
z =[ xe(t) dat (B-2)
0
Now,
T T ot
z =[dt /dfc v(t) h(t - ) ]dc v(o) h(t - o)
0 0 JL0
T t t
=[dt[d1fdo v(t) v(o) h(t - ) h(t ~ o) (B-3)
0 0 0

The output SNR R is required. We obtain the appropriate averages

as follows:
T t 1,

<22 = (dt[dr [s('c) + n(r)} hit -1) | do {s(o) + n(o] h(t - o)

+N S+N
0 0
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SO

[t %
] dt d do (s(t h(t - h(t ~
[ fxfo(s()s@s( ™) h(t - o)
0 0

t t
+[d’r [do R(¢ - o) h{t - T) h(t - o)
0 0

T t v

]

i
<z% =[dt[d¢[do R(t - o) h(t - 7) h(t - o)
BT

Thus,

T ¢t %

<zg - =[dt[dfr/do é('r) s(o)g h(t - ©) h(t - o)
+N

o0 0 0

Lotting

é(’r) s(c)g = R (7 - o)

Wwe can write

T t t
<Z%+N - <zﬁ =[dt[dr[dc RS(T- o) h(x) h(o)
0 0 0

Calculating the variance of z given that only noise is present,

/fg ¢ b
<22> = j[ dt /d’r v(t) hit - T)[dc v(o) h(t - o)

N
\\<3 0 0

S 3

T
'[ds "[dn v(n) h(s - n)[dE v(E) h(s - E)

0 l 0 0
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(B-k)

(B-5)

(B-6)

(B~7)

(B-8)
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fT T it t 3 S
= j dt[ds[df[do[dﬂ [dE é(f) v(o) V(n)V(E>
J N

o 0o 0 0o o 0

* h(t - ) h(t ~ o) h(s - n) h(s - &) (B-9)
If the noise before filtering is white,

) vy =m0l - ) (-10)

If the noise is also gaussian,

T T L 5
<zQ> = n2N02 [dt[da [d’t h2(t - 1) /dn h2(s -n)
N
0 0 0 0
+fd'rh(t-'r)h(s -’r)fdoh(t - o) h(s -~ a)
0 0
t t
+[dfr h(t - t) h(s -’r)[doh(t - ) his -o)‘(»
0 0 J
T t P " 2
= nN° [dt [dr SRR I [d'r h(t - T) h(s - 7)
0 0 0

(B-11)
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List of Symbols

= yelocity of sound in water

distance between two hydrophones

(o9
]

d(v) = test statistic in sub-optimum detection

6(x) = Dirac delta function

A = sampling interval

F = coefficient matrix of sub-optimum quadratic form

f(v/o) = conditional probability density of v with no signal present
f(v/s) = conditional probability density of v with signal present

§ = bandwidth of signal frequen~y uncertainty in cps

g

phase of desired signal

U

coefficient matrix of optimum quadratic form

1ot
1

H = filter weighting matrix

i

h(t) = filter weighting function

h(ti) = sample of Hilbert transform of n(t)

i}

identity matrix

I

noise covariance matrix

=S
n

K;i = glement of inverse covariance matrix
¢(v) = likelihood ratio
M = numbcr of hydrophones in an array

number of possible discrete signal fre¢ uncies

it

m

N = noise power

1

N_ = noisc spectrum level in watts/rps
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A=37

n = number of time samples

Ll

il

n = noise vector

13!

n(t) = ncise signel in continuous form

S hifak
£

nF(t) = noise signal after filtering

SRS

0(x) = "at most on the order of x" .

P(xi) = probability function

p(x) = probability density function

iRl

R = output signal-to-noise ratio
1,1
R (7 ) = autocorrelation function of noise at a hydrophone

R(t,t_) = cross-correlation function for noise signals at
two different hydrophones

L Bl P —

RF(T) = a.c.f, of noise after filtering
S = set of unknown signal parameters
§ = desired signal vector

!
8 = transpose of vector s

s(t) = desired signal in continuous form

T = obscrvation time of received signal

By E time delay betwcen two hydrophones

s

u = sampled Hilbert transform of v(t)

v = received signal vector
v(t) = received signal in continuous form
{ W = noise bandwidth in rps

x(t) = received waveform after filtering

n

2 Q = bandwidth of signal frequency uncertainty in rps

signal frcquency

w
w = center of band of signal frequency uncertainty
Y = filter output in sub-optimum detection

y(t) = received waveform after squarer

z = integrator output
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det, g = determinant of matrix g

<’> = statistical average, conditioned on presence of noise cnly
N
\

> = statistical average, conditioned on presence of toth signal
S+N  and noise

tr A = trace of matrix ﬁ

L)

Abbreviations

a,c,f, = autocorrelation function
LR = likelihood ratio
p.d,f, = probability density function

SNR = signal-to-noise ratio
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I, Introduetion

The determination of the bearing of a plane-wave random signal in a
background of isotropic random noise, by means of so-called "split-beam!
systems of transducers, has been popular because a null output is
obtained when the transducers are steered "on target," Such systems
are of great value in automatic tracking applications,

However, the random fluctuation of the output of such systems
causes uncertainty in the determination of the bearing of signal source,
It i1s the purpose of this report to determine general mathematical
relations for the computation of the bearing uncertainty, and from
these relations to determine system parameters which optimize or
minimize the bearing uncertainty,

The problem of determining bearing uncertainty has been treated
in Reference 1, but the analysis is somewhat restricted in that the
system is not quite as general as the one considered here, The problem
of minimizing bearing uncertainty has rot been treated previously, btut
the analysis is parallel tc that done by Eckart in Reference 2, There

also seems to be an error in Reference 1 in the analysis concerning

milti-element arrays,

II. Definitions and Assumptions

The system to be analyzed is showm in Fig, 1. The outputs of each

set of M transducers from an array of 2} transducers are summed and
pach sum i3 then fed into a linear filte., The frequency response

functions of the filters sre related in that there i3 a 90o phase shift

between the response functions at all frequencies, The filtered sums

B-1




B~2

Phase-Shift
Infinite ; - Low-Pass
Summers  Networks Clippers Multipller M1ter

M+1 (O

M+2 0O

Sl(t) + nl(t) and Filters

1 0O \

\

2(t + 0, (t)
2 0O

*

M(t) + nM(t)

Syp1 (B) + g (8)

SM+2(t) ¥ nM+2(t)

. L

' By (30)

.

SZM(t) + nEM(t)

M O

Fig. 1 Typical Split-Beam System

are then passed through infinite clippers, the results are multiplied and
the product is averaged by means of a low-pass filter. The average output
of the low-pass filter as the array is steered gives the bearing response
pattern for the system,

Following are the major assumptions inherent in the analysis:

1) The transducers in 'he array have omnidirectional characteristics,

2) The array of 2M transducers is a linear array, with equel spacing
between transducers,

3) The signal in the medium is a plane wave,

i) The noise 1s isotropic in the medium and the cross-correlation

between the noise components of the outputs of different transducers is

assumed to be zero,

o

-

~i

o,
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5) The sigral and noiso are Gaussian and stationary, and signal and
noise are independent,

6) The spectral density of the signal need not be the same as that
for the noise at the output of any transducer.

ITI, Bearing Response Pattern

Since the signal 1s a plane wave, the array is linear with equal
spacing between transducers, and the transducers are omnidirectlonal,
the relation in Eq., (1) holds for the sign: component from the i

transducer,

s, () = sl[t -4 - m} (1)

The time T is the spatial time delay of the signal between adjacent
transducers, When T = O , the bearing of the signal is perpendicular
to the line of the array.
The outputs o. the summing amplifi .rs in Fig, 1 are given by
M (

vA(t)uz (8]t - (1 -1)T:l+ni(t) (2)
=1 °©
M

"B(”"Z <slt-(k+M-1)1] *“Mm(t)l (3)
kel | © )

The autocorrelation function of vA(t) and vB(t) may be expressed
in terms of the autocorrelation functions of the signal and noise at any

transducer by means of the following relations,
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M Y
R (1) = ; E {Sl[t' (i-l)T] +n.l(t) {sl[t - (¢-1) +'r]+ ng(t + 7) 11

ins[m (i - z)-r-] + R (7)
2=1

S v

i=1
M M
=5 Z Zps['f-f' (i - 45)'1‘] + UNp (T) (1) E
i=1 &=1
RVB(’L') = RVA(T) (5)

In Eq. (L4) S and N are the signal and noise powers at each transducer

respectively, and Py and P, are the corresponding normalized autocorrelation

furstions, ,
l

The spectral densities of vy and vy are the Fourier transforms of

the corresponding autocorrelation functions.® In Eq, (6) g 'w) and r;n(m) g

are the normalized spectral density functions for signal and for noise

"

respectivily at every transducer,

*The transform pair given below will oe used for relati i1g spectral
densities and correlation functions throughout this report.

- |

3(w) = A [R(T) e g
2n j é

R(t) = A/(G(m) CJMT dw
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0,075 ), V5 | pyfee it - o) s
=1 421 4
+ MN gl—- fpn('r) ™39 4t

MM ,

-8 z ng(w) Jol=4T |y g, () (6)
i=l 4=l

G, (0) =G, (o) (7)

The filter frequency response functions are related in that there is a
90° phase difference between their phase angle at every frequency, Since
simple filter realizations are desirable, for the initial analysis it is

assumed that

H, (ju) = Jukc Hy(ge) (8)

where k is an arbitrary proportionality constant,
The spectral densities of the outputs of the filters are found in

Eqs, (9) and (10),

2
G, (o (9)

2 2
GXA(co) a2 Wk ’HB(jw)

2
Hy(Jo) G, () (10)

G. () =

*B

The development 3a Eqs. (1) through (10) is preliminary in
determining tne bearing response, which is the average value of the
output of the multiplier, y. The value of y is dependent on the time

delay T, and has been found to be1
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(12)

2,
R (0) R, (O
XA _\B }

"

The quantity R (0) is the c¢ross-correlation funciion of X, (t) and xB(t)
A
at 7t =0, The cross-correlation may be evaluated by first writing the

convolution integrels which yield xA(t) and xB(t)

M [e3e]
xA(t) a z jf{sl[t S (SRS a] + ni(’o - a)} hA(a) da (12)
i= .

Mo
xB(t) = ;l [{sl[’o - (k+M-1)T - {3] + nM+k<t - ﬁ)} hp(ﬁ) dp (13)

In Eqs, (12) and (13) hA(a) and hB(B) are the welghting functions of the
filters with frequency response functions HA( jw) and HB(jw) respectively,

The cross-correlation at v = 0 1s defined by

RXAXB(O) = E[ (t) xB(t] (1k)

Since there is no correlation between the nolse outputs of different

transducers, the noise terms disappear when Eqs, (12) and (13) are

substituted into Eo, (1L). Thue

/[ t-(i-l)’l‘-a}s[‘o-(k+M«-l)’I‘-f3] X

hy(a) Py() da a3

M

M
o7 L L

1 k=1

MoK F
“SZ Z f ] pslra-ﬁ-(k-iﬁlﬂ'} 'nA(a)hB(ﬁ)da g (15)
e c)
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The matrix F is an nXn matrix in the single hydrophone case, which we
shall congider first, The quantity _\_r'_I_*‘_ v can be thought of (in

continuous form) as the squared output of a filter which is not necessarily
time-invariant, subsequently integrated over the observation time of the
received signal. The interpretation of F can be made as follows:

Let the discrete form of the filter weighting function be an nXn
#*

matrix H, 2nd let the output of the filter be the vector Y = H

i<

't
The squared and summer filter output is then v HH v . Thus, letting

ffﬁx= sz (72)

we have

F = HH (73)

Now the output SNR is to be found, The calculations of the required
averages are similar to those in aeriving Eqs. (26), (27) and (29). The

following can easily be shown:

<d(y_)S+N = tp <§ _:_5_>S§“) +tr (KF) (74)
<d(y_)g =tr (K F) (75)
\/[d<z>];> = 2tr (KF)P + tr° (KF) (76)
\ [

Thus, from Eq. (25),

2
[tr 55 _F]
= </ '% ) (77)

2 tr (k 1)

PERSUE—

"More explicitly, Y, = ZHijvj . If the filter is to be realizable,
J
Lhen Yi 0 for 1 < j, for any v. This is assured if Hij =0 “ar 1 <3,

tnus H is "lower disgonal” in such a case,
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Let us now use Eq, (77) to calculate the output SNR for the case
considered earlier, i.e., the case of a steady sinusoid whese frequency
lies somewhere in a band Q rad/sec wide centered at @, Lot us ~ssume
the noise is white and strictly cut-off at W rad/sec, In such a case,

é _s_'> is given by Eq, (L5) as before, Here F simply represents the
S

square-and-add operation and so

Fe=1 (78)
Since the noise is white,
K = NI (79)
Thus, from Eq. (77) we have
L L
R=£A? g ___?A Wr (80)
8l 8nlN
where n = LS . It is clear of course that the result Eq, (80) does not
n

depend in any way upon the uncertainty about signal frequency. However,
Eq, (80) can be rewritten in a more interesting form:
Ra—%(ﬁ)@ ,  W>g (61)
ln e W -
This is seen to be identical to Eq, (55a) except for the factor % . Thus
we can summarize:

If the background noise is white over a band (0, W) , the optimum LR
detector consists of a filter matched to the band of signal frecquency
uncertainty @, where W > Q , followed by a squarer and an integrator,

If, however, the received signal is not filtered before detection but is
simply squared and integrated, the output SNR derived for the cptimum

detector must be multiplied by the factor 3 c

I |
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VIIIF Sub-optimum Detection--Hydrophone Array

fIf an M-hydrophone array is used, the operation equivalent to X'E v
in E%. (71) consists of summing the outputs from the M hydrophones and
then using the summer output in the quadratic form X'E v.

:If the background noise is broadband white, and the array is steered
on tPrget, it can easily be verified that the output SNR is

I

R=-ﬁ§—‘g—% 2)3r (e2)

IX. | Conclusicns

:There is evidence that the low frequency portion of received signal

|

spedtrum contains certain coherent signals which may be used as a basis
|
for:detection. It had been hoped that advantage could be take.. of the

perﬂodic nature of these signals to perform some form of cohersnt

|
detection and thereby enhance signal detectability, However, the lack
of érecise knowledge about the frequency of the periodicity is a stumbling
I
block, If the frecuency is known only to lie within certain upper and
1

lower limits, then the optimum detection procedure is an incoherent one,

i,e,, an energy measurement of the received signal, Coherent detection

is, generally speaking, cross-correlation with a replica of the desired

signal, However, effective cross-correlation requires at least

knoﬁledge of the frequency or fundamental frequency of the signal, This
|
in a nutshell is why the optimum detection scheme for *the case we have

conﬁidered is not a coherent schene,

|

| A comparison of the case of a sinusoidal signa’ of unknown frequency
|

andsphase with the case ol a gaussian random signal shows that in either

casg the ootimum LR detector has the same form, i.e., a purely incoherent
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detector. This indicates that a periodic signal of unknown frequency is no
more detectable than a gaussian random signal of the same power confined to
the same frecuency band., This is a surprising result, but one which follows
quite clearly from a straightforward ap<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>